
1

Multimodal Interaction with Loki
P. Bustos, J. Martı́nez-Gómez, I. Garcı́a-Varea, L. Rodrı́guez-Ruiz, P. Bachiller, L. Calderita, L.J. Manso, A.

Sánchez, A. Bandera, and J.P. Bandera

Abstract—Developing a simple multimodal interaction game
with a 31 dof’s mobile manipulator can become a challenging
enterprise. A conceptually simple task quickly unfolds into a
rather complex ensemble of driver-oriented, framework-based,
software-enabled, state-machine controlled mechatronics. In this
paper we propose a multimodal interaction game designed to
test the initial steps of a cognitive robotics architecture called
RoboCog. In the game, a human shows an object to the robot
and asks him to touch it with one of his hands. Loki, the robot,
searches, gazes, represents and touches the object, then talks
and waits for new events. The game goes on until the human
player decides to quit. In this paper we describe the steps taken
to achieve this goal, analyzing the decisions made in terms of
architectural choices and describing how the sequential control of
multimodal resources was built. To conclude, several snapshots of
the game are presented and commented along with video material
of Loki playing with a volunteer.

Index Terms—Mobile manipulators, Humanoid Robotics,
Human-Robot Interaction

I. INTRODUCTION

HU man-robot interaction is becoming a pressing goal in

the global robotics agenda. If robots are to accompany

people in their daily activities, they need to know how to

interact with them using different sensorial modalities. Speech,

facial expressions or gestures are among the most basic human

ways of interacting and sharing information.

In this work, we present an initial effort towards modeling,

building and understanding simple multimodal HR interaction

tasks using a quasi-humanoid mobile manipulator called

Loki [1]. The experiment consists on a simple game between

a human and a robot. The human introduces herself and asks

Loki to play the game. Upon acknowledge, she shows a yellow

ball to the robot and it starts to track it, continuously fixating

its gaze upon the ball with an RGBD sensor placed in the

fronthead. After a human verbal indication, the robot reaches

the ball with its hand and waits for a new interaction, or moves

its arm back to a resting position after some courtesy delay.

The robot tracks the object and accepts new speech commands

during the whole span of the game. The development of

this interaction game involves several problems such as

generalized inverse kinematics, RGBD object detection and

tracking, speech recognition and synthesis, and sequential task

execution. All these problems present a significant degree of

complexity, but the most challenging aspect is the integration

and coordination of these capabilities in an expandable

P. Bustos, P. Bachiller, L. Calderita, L.J. Manso and A. Sánchez are with
the University of Extremadura.

I. Garcı́a-Varea, J. Martı́nez-Gómez and L. Rodrı́guez-Ruiz are with the
University of Castilla-La Mancha, Albacete, Spain

A. Bandera and J.P. Bandera are with the University of Málaga, Málaga,
Spain

architecture that, further on, will facilitate the design of new

and more complex tasks.

The interaction game is a three-stage process where the

following subtasks are performed: scan and track the ball,

acquire an internal representation of the position (with respect

to the robotic arm) and try to touch the ball.

Fig. 1: The mobile manipulator Loki

The interaction game presented here is an early test of

the robotics cognitive architecture, RoboCog, in which several

research groups are currently involved. RoboCog has its initial

inspiration in the classic three layer architectures described by

Gat [2] and in the Simulation Theory of the Mind, see for

example [3]. Reactive, planning and executive modules access

a complex, multi-faceted representation of the robot itself, its

environment and the agents in it. This structure is called deep

representation and can emulate the result of virtual actions

done by the robot in its represented world. RoboCog combines

real and virtual actions at different levels of abstraction to

generate the best possible behavior given the current task.

During the last few years, the robotics community has

developed fully autonomous robots capable of performing

potentially interesting tasks in indoor environments such as

the one presented in this paper. Despite rather sophisticated

planners that support adaptive plan execution are available

(e.g., [4]) most of these works are limited to very specific

tasks, so the research effort is focused on task execution

and the low level algorithms that enable robots to detect the

elements of the environment, approach them and pick them

up.

The work presented in [5] describes the architecture and

several design decisions of a robotic butler. In the paper, task

execution is solved using behaviors activated by a hierarchical

2

concurrent state machine. Besides few additional features such

as the one presented in [6], that enables robots to learn these

state machines, most task-specific advanced robots follow the

same approach.

The rest of the paper shows the steps taken to set up the

HRI game based on RoboCog and is organized as follows. In

section II a brief introduction to Multimodal HRI is provided.

Section III provides a brief description of the robot Loki.

Section IV introduces the basic building blocks of RoboCog.

Section V describes how Loki and RoboCog are instantiated in

a multimodal interaction game called ”touch the ball” Finally,

in section VI the results are analyzed along with the ongoing

research in this topic.

II. MULTIMODAL INTERACTION

In the scientific literature, multiple definitions of Human-

Robot Interaction (HRI) can be found. HRI is basically

devoted to the understanding, design and evaluation of robotic

systems for their use by or with humans [7]. Moreover,

Multimodal HRI can be considered as the study of the

interactions between humans and robots using multiple sources

of information or channels to provide a natural way of

communication.

The interaction between robots and humans is inherently

influenced by the proximity between them. According to

that, HRI is classified as remote and proximate interaction.

Remote interaction is considered when the human and the

robot are separated temporally or spatially. This type of

interaction focuses on teleoperation, supervisory control and

telemanipulation. Proximate interaction is considered when

human and robot are both placed in the same scene, and is

mainly focused on the so-called social robots, which includes

social, emotional and cognitive aspects of interaction [7]. The

types of communication that exist in this interaction can be

grouped into: oral, visual and gestural.

In this work we are focused in the proximate multimodal

interaction approach, where a social mobile robot commu-

nicates with a human, with the final goal of playing an

interactive game named ”touch the ball”, where the three types

of communication are addressed.

III. LOKI THE ROBOT

As the human counterpart in the game we use the robot

Loki [1] (in Fig. 1 its current aspect is shown), which is

an autonomous mobile robot built as a collaboration among

several entities: the University of Castilla-La Mancha, the

University of Extremadura, Robotnik S.L.L and IADex S.L.

It is composed of a mobile base, a rigid back spine, a torso

with two arms and hands and an expressive head.

The base of the robot has been designed to support a load

of 200 Kg and can accommodate two 36Ah/24V batteries,

power supplies, a battery charger, a DC/AC 2 KW inverter, two

lasers or four Asus Xtion RGBD cameras attached to each side

of the base,and a dual-socket, 12-cores, liquid-cooled Xeon

board holding a NVIDA GTX650Ti GPU. This configuration

provides enough autonomy and processing power to host our

complete cognitive architecture on board.

Each arm is composed of four Schunk servo-drives in a

human-like upper arm configuration (3 degrees of freedom

for the shoulder and 1 for the elbow) and a forearm built in

RoboLab with 3 additional dofs (a rotation along the forearm

and two orthogonal rotations in the wrist). This two last dofs

are built using a 3R Stewart platform that provides a great

holding torque for the wrist.

Attached to the top of the torso, Loki holds the expressive

head Muecas (see Fig. 2). This head has been developed in

parallel to Loki and has a 4 dofs neck that uses the same

kinematic construction as the forearms. The head holds a

binocular visual system composed of two PointGrey Flea2

1Mp cameras with 6mm focal lenses and a RGBD sensor

placed in the fronthead. The cameras are housed inside two

hollow spheres made in Teflon. These eye-balls can pan

independently and have a common tilt. The eyes are moved

by means of three linear motors from Faulhaber that provide

enough force to avoid the need of gear trains and to reach

maximum angular speeds close to 600 deg/sec. Muecas also

has an articulated yaw driven by a micro-servo and 2 DOF

eyebrows, controlled by 4 servos as well.

(a) Eyes detail (b) Complete head

Fig. 2: Muecas head

IV. ROBOCOG: A COGNITIVE ARCHITECTURE BASED ON

INTERNAL SIMULATION

RoboCog is a cognitive architecture being developed as

a common effort among several research groups at different

universities including UCLM, UMA, UC3M, UJ and UEX.

During the last five decades, many architectures have been

proposed to model general intelligence in artificial agents and

humans. Starting with some of the paradigmatic projects from

the golden age of classic AI such as CyC [8], Prodigy [9],

SOAR [10] or ACT [11], which many are still alive and

in active development, passing through the skimming filter

of the Behavior-Based AI in the late eighties [12] and

arriving to the integrative look of three-layer architectures

compiled by Gnat [2] in the early nineties, most of these

control schemes center the debate on the integration of the

deliberative/reactive spectrum into a working computational

design. Several reviews have been recently published [13],

[14] showing the history, evolution and current state of the

topic.

A less common approach in the realm of cognitive

architectures for robots is the so called Simulation Theory of

Cognition [3], [15], [16], [17]. This theory advocates the use

of an internal model that is sophisticated enough to anticipate

and simulate the outcome of virtual actions in the form of

virtual perceptions. Quoting Holland [3]:

3

...at the heart of the mechanism is not just the body

in the environment, it is a model of the body in a

model of the environment.

In cognitive neuroscience, the idea of the brain continuously

generating predictions that anticipate the relevant future is

widely accepted and important research is being conducted to

prove it as one of the basic building blocks of intelligence [18],

[19], [20]. This idea is so powerful because it can be applied

hierarchically at many abstraction levels, from the short

timestamp of a spinal cord reflex, to the anticipatory perception

of a distant approaching car, using a priori information

recovered from episodic memory in combination with low-

frequency visual and auditive indicators.

To translate the core of these ideas to robotic computational

architectures, a notion of internal or inner model is often

used. This model represents actively the agent’s environment

and holds enough structure to act as a virtual simulator.

Although most architectures use some kind of internal model,

i.e. symbolic domain knowledge in task planners or grid

representations of space in path planners, a more integrated,

flexible and coordinated representation is needed if we want

to perform complex simulations at different abstraction levels.

We use the term, deep representation (DR), to refer to this

computational modules that can be used to represent, update

and simulate the current state of the robot itself, the proximal

environment around it and of the agents in it.

The DR represents the geometry of the scene and a set of

symbolic attributes and predicates that are relevant for the rest

of the architecture. Symbols and predicates are computed from

the model at any time and their description is available to the

rest of the architecture through a shared ontology. The DR

of a robot is a central repository of elements and events in

its ego-space. It can be queried for geometric data such as

the coordinates of some object nearby, and also to evaluate

symbolic predicates such as if its body will get through a

narrow passage. It also can export its entire state as a PDDL

expression to be used by task planners. The DR is implemented

using the RCIS simulator of the RoboComp ecosystem [21]

working as an internal updatable model.

Fig. 3: Outline of the RoboCog architecture.

In the design of RoboCog we have extended the ba-

sic three-layer idea with a DR module, that provides the

necessary simulation support. As Figure 3 shows, the ex-

tended set, deliberative-executive-behavior-DR (DEBD) de-

fines the overall external view of the architecture. Behaviors

are implemented as networks of software components called

CompoNets. Typical behavior modules proposed for current

mobile manipulators usually include complex activities, such

as planning the movements of the body in cluttered space

(including standard navigation), object detection recognition

and manipulation, emotion recognition and generation, speech

recognition, synthesis and dialog generation, that need a rich

underlying software support.

A vaguely related idea to the deep representation, widely

spread in the eighties, is the blackboard architecture where a

common space is used by several experts to gradually solve

a problem [22]. RoboCog however, proposes a much more

specific and structured content, representing the robot itself

and its surrounding space. DR is much closer to virtual worlds

than to static memory structures and are designed for real-time

functioning.

In the next section, an early implementation of RoboCog

for a basic multimodal interaction game is described in detail.

With the exception of the planner, that has been replaced in

this experiment by a hierarchical state machine, all the others

elements of the architecture are in use.

V. EXAMPLE OF USE: ”TOUCH THE BALL” GAME

As explained in Section I, the ”touch the ball” game consists

on a human showing the robot a ball at different places

and asking it to touch it with its hand, while maintaining

a simple conversation. Our initial RoboCog implementation

allows the robot to engage in the game using and reacting

to different sensorial modalities. The architecture has been

designed as a distributed system whose basic elements are

software components that can be recursively nested into

CompoNets. The framework used for the C++ implementation

is RoboComp [23], which uses a DSL-based target code

generation system. This system allows the user to select an

specific communication middleware, such as Ice or Nerve [24]

in generation time.

The Executive, see Figure 3, drives a hierarchical state

machine that provides the necessary sequential order. This

machine activates several CompoNets implementing the low

level behaviors. This behaviors publish the changes in the

world that they detect and also actuate on the drivable parts

of the robot. The DR is implemented as an instance of

RoboComp’s RCIS simulator [23]. Typical changes of state

detected by the behaviors, such as a ball position change, are

directly transmitted to the DR via its management interface. As

a consequence, the globally accesible internal representation is

updated and the rest of the behaviors become aware of it. For

structural changes, such as the appearence of a new object, the

Executive is notified first and some comprobations are made

before introducing the new object, to preserve the integrity

and internal coherence of the DR.

The rules of the game are simple: a) the robot is expected to

determine, in real time, a feasible arm configuration to touch

4

a ball; b) the ball is moved by the human player who controls

the game; c) the human determines when the game starts and

finishes, and when the robot has to touch the ball; d) the human

is also in charge of indicating that the robot has properly

touched the ball so that the robot can move its arm back to its

home position. Concurrently with all the searching, tracking

and touching activity, the robot must interact with the human

player understanding asynchronous commands and generating

utterances that signal some internal transition or anomalous

situation.

A. RoboCog implementation

To describe the architecture, we will first identify all the

components and their relationships. The main component is

the Executive. This component manages the set of compoNets

and determines the sequential behaviour of the system by

implementing a concurrent, hierarchical state machine. This

machine runs on the engine provided by the Qt library.

• BallTracker: this component uses the RGBD camera of

the robot to continuously track the position of the ball.

Once the ball is localized, its 3D coordinates and shape

are introduced into the DR and made visible to the other

behaviors. Posterior changes in the estimated position of

the ball are made available for the rest of components by

publishing a topic 1.

• BodyInverseKinematics: computes a generalized inverse

kinematics solution to the different parts of the robot’s

body. To do so, this modules uses the internal represen-

tation of the robot hosted in DR to compute collison-free

trajectories. Currently, the solution is provided for the

neck-head subsystem and for the left arm. Using these

solutions, this component is able to drive these body parts

to a target position (the ball in that specific case) and

publish a topic when the goal has been reached.

• Dialogs: processes the transcription (and the confidence

value) obtained from the speech recognition component.

Accurate transcriptions are translated into commands for

the robot, whereas low confidence results require some

kind of confirmation from the user.

• SpeechGenerator: allows the robot to speak to the human

player using the Verbio speech synthesis algorithm.

• CommandGenerator: provides the human player with a

visual interface to generate commands that can be used

by human players with speech disorders. This component

can be removed for standard games.

• SpeechRecognition: this component uses the Microsoft

Kinect Sensor and SDK software. It records the speech

signal using the robot’s microphones and then transcribes

the speech uttered by the human player.

• DR: provides a dynamic deep representation of the robot

and the environment. The perception modules update the

representation and everone can access it or request a copy

of it to simulate the outcome of possible actions, as in

the case of the BodyInverseKinematics module.

1The term topic refers to a data structure that can be broadcasted to modules
that are subscribed to it.

In addition to these behaviors, there are other components

running in the system that provide access to the hardware. The

motors of the arm and the head, and the Kinect sensor are

controlled by specific components that wrap the manufacturer

libraries and provide concurrent access to the rest of the

system. These components are JointMotor and RGBD.

In the current implementation of RoboCog, we use the Ice

middleware that the ZeroC company offers with open source

licence. Ice provides both a native client/server communication

system, and a a publish/subscribe event distribution service

named IceStorm2. This service allows to decouple component

connections: clients are now considered publishers and servers

subscribers. A single publisher can generate and send data to

any number of subscribers. Icestorm is used in this work to

deal with three events:

• The ball has been touched: BodyInverseKinematics

plays the publisher role and the Executive subscribes to

its events. This signal represents when the robot internally

detects that it has achieved the desired joint configuration.

• The position of the ball has been detected: BallTracker

takes the publisher role while the Executive subscribes

the events. This signal is sent whenever the ball changes

its position. When the ball is out of the field a different

signal es emitted.

• A new command has been detected: Dialogs and/or

CommandGenerator play the publisher role while the

Executive subscribes to the events. It is generated after

an explicit command is uttered by the human player.

The rest of the communications are summarized below:

• Executive → BodyInverseKinematics: Based on the

information received from the ball tracker, the executive

sends to BodyInverseKinematics the new goal position to

be achieved.

• BodyInverseKinematics → JointMotor: Values are sent

by BodyInverseKinematics to the arm joints and obtains

the final values from the robot.

• BallTracker → RGBD: BallTracker obtains the stream

of RGBD data from the camera installed on the robot.

B. Ball detection and tracking

Ball detection and tracking is solved by a unique component

using the RGBD information obtained by the robot camera.

The component represents the possible situations using three

states: waiting, detecting and tracking. The waiting state

corresponds to the initial situation when the component is

waiting for a description of the target. Such description

is given by a color value (hue and saturation), assuming

untextured targets, and the target size. When the component

receives the target description, it changes its state to detecting.

Detection is carried out by selecting homogeneous regions of

the image whose color values differ less than a given threshold

from the target color. From the selected regions, the component

chooses the one which better approach the target size. If no

region coherent with the target description is found for a while,

the component returns to the waiting state in order to wait for

2http://www.zeroc.com/icestorm/

5

Fig. 4: Global system architecture. The drawing shows the main components of the architecture and the type of

communications that occur among them.

another target description.

Once the target is detected, the component enters the tracking

state. To track the target, it creates a model HSD (Hue,

Saturation, Depth) histogram from the target image window

and proceeds as follows:

1) Create a probability image from the current image and

the model histogram by copying, for each pixel in

the image, the corresponding bin value of the model

histogram.

2) Run CamShift: find the object center using MeanShift

on the probability image and adjust the target window

size according to it.

3) If CamShift reaches the convergence:

a) Compute the HSD mean and standard deviation of

the new target window.

b) Adjust the Hue, Saturation and Depth ranges of

the model histogram according to the mean and

the standard deviation.

c) Compute the model histogram of the new target

window.

Once the previous process has finished, the component

makes an additional verification over the new target position.

It estimates the target size using the depth values of the new

window and rejects the tracking result if it does not match

with the real size of the target. If the tracking process does

not provide a good result during a certain number of iterations,

the component returns to the detecting state and restarts the

detection process.

C. Arm reaching and head gazing

The problem of positioning an open articulated chain of

joints in pose space, SE(3), is generally solved by computing

the inverse of the non-linear forward kinematics function of the

chain. For a mobile manipulator endowed with an expressive

head, like Loki, touching an object might involve most of

the joints in the body, specially if natural movements are

sought. The head must gaze the object before the arm starts

to move and the base might turn slightly in search of a more

comfortable HRI posture. Of course, a movement of the base

implies a change in the position of the head and the arm,

so there must be a final consensus among the body parts.

Although this body-parts coordination is still ongoing research,

a simple requisite is to conceive the body as a set of parts that

whose configuration can change dynamically. For example, an

arm can include the first four joints for a simple ”touch the

ball” task, or seven joints if the wrist is included for a more

complex ”prepare to grab” task, or eleven joints if the hand is

included for a ”grab this mug” task, or even 13 joints if the

mobile base is also included in the kinematic chain and the

task extends to ”grab that mug on the table”. To achieve this

flexibility we use a generalized inverse kinematics algorithm

for all and any open chains in the robot.

In Loki, both arms and the neck stand as three kinematic

chains departing from a central point in the torso. Each arm has

eleven dofs, including the hands. The neck is built as a simple

Stewart platform with three prismatic links for wrist rotation

plus an additional rotation motor aligned with the forearm. As

we want to use the same algorithm for all kinematic chains,

the closed structure is virtually converted to an open chain

composed of pitch, roll and yaw, through its trivial inverse

6

kinematics equations that map angles to prismatic lengths.

These equations allows us to insert three 4x4 matrices in the

open chain representing the neck and accepting angles as input

parameters.

The generalized inverse kinematics algorithm used in the

implementation of this module is the Levenberg-Macquard

least-squares minimization procedure [25], [26]. This algo-

rithm regularizes the solution by continuously switching be-

tween Newton’s method and gradient descent, to avoid singu-

larities. Given φ the set of angles of the chain, J the Jacobian

of the forward kinematics and e the error vector, the LM

method computes the increments in the joints as:

δφ = JT (JJT + λI)−1e (1)

Note that the expression is valid for any open chain in the

kinematic tree of the robot. To compute the gaze of the head,

a virtual stick is placed at the optical center of the internally

represented - DR in RoboCog- RGBD sensor, that extends

outwards to the current target. The residual is computed as

the distance between the tip of the virtual stick and the target.

D. Speech Recognition

Speech constitutes one of the most natural communication

modalities for human beings. Owing to this fact, the use of

speech can be quite adequate for the supervisor to convey

information to the robot. Here, the supervisor can use his voice

to control the robot actions while he moves the ball around

the environment.

Although speech recognition is a challenging task for

several reasons (speaker variability, noisy environments, etc.)

the use of statistical approaches has proven to achieve accurate

results in several scenarios or environments. From this point

of view, speech recognition can be stated as the search for the

optimal sequence of words ŵ given an input utterance x:

ŵ = argmaxwPr(w|x) (2)

The maximization in Eq. (2) entails the estimation of a

single conditional probability (Pr(w|x) which is usually not

feasible due to the scarcity of training data which does not

allow for accurately estimating such probability distribution.

Alternatively, we can apply Bayes’ rule to Eq. (2) to write:

ŵ = argmaxwPr(x|w)Pr(w) (3)

As can be seen in Eq. (3) now we have two probabilistic

models in the maximization. The first one Pr(x|w) is called

Acoustic model and deals with the probability that the

sequence of words w produce the input speech signal x. The

second one, Pr(w), is the Language model and it is used

to score a transcription hypotheses w so that likely sequence

of words in the language are given a high probability and

unusual ones are given a low probability. The use of this

additional term (language model) can, to some extent, mitigate

the errors in the estimation of the conditional probability that

relates the input signal x and the transcription and, due to this

fact, the approach described by Eq. (3) is preferable to directly

modelling the conditional probability in Eq. (2).

Regarding the acoustic models, the input speech signal

is firstly segmented into short frames where the signal

is assumed to be quasi-stationary. Next, different signal

processing techniques are applied until each frame in the

signal is represented by a feature vector. Hidden Markov

Models (HMMs) are widely used to approach acoustic models.

For each acoustic unit (a phoneme or a short sequence of

phonemes) an HMM is usually defined as a 3-state model,

where, in each state, two transitions are defined. One transition

to the same state and another one to the next state. This

way, the model is able to cope with the different durations

of the acoustic units due to different speakers or other factors.

The feature vectors in the signal constitute the observations

at each state and this observation are modelled by using a

mixture of Gaussian. The estimation of both the transition

probabilities and the Gaussian mixtures that generate the

feature vectors can be efficiently performed by using the

Baum-Welsch algorithm [27].

Language models, on the other hand, deal with the joint

probability of a sequence of words. Directly estimating this

joint probability is not usually feasible in most of the tasks

and therefore, a factorization where each word in the sequence

is conditioned to the n− 1 words is followed. This approach

is known as n-gram model [28] where n is the model order

that defines the number of previous words considered in

the conditional probability. Usually 3-grams or 4-grams are

employed where the conditional probabilities are estimated by

maximum likelihood.

Finally, once both acoustic and language models have

been estimated, the sequence of words ŵ corresponding to

a specific utterance x is obtained according to Eq. (2) where

the maximization is solved through a dynamic programming

algorithm called Viterbi search algorithm.

In this work, the automatic recognition system is used along

with a dialog component. This way, the speech recognition

component copes with the process of transcribing the input

voice signal. This transcription is then sent to the Dialogs

component, along with a score that indicates the accuracy (or

the confidence level) of the transcription. In case of a low

score, the SpeechGenerator component is used to require a

confirmation from the supervisor.

The SpeechRecognition component has been developed in Ice

and runs on a Windows machine. It uses the Kinect Sensor

and the Software Developers Kit for Speech, provided by

Microsoft3. In this work, we have used the Spanish acoustics

model provided by the SDK. We programmatically built all

the constraints for the speech recognition language model or

grammar, according to the constrained set of commands that

can be recognized, along with two additional confirmation and

rejection utterances.

The Dialogs component processes the confidence score com-

puted by the speech recognizer. Accurate transcriptions are

directly published through the IceStorm service but low con-

fidence transcriptions result in an additional step where the

robot interacts with the supervisor. This interaction mainly

consists in the robot uttering the transcription achieved while

3http://www.microsoft.com/en-us/download/details.aspx?id=14373

7

the supervisor confirms or repeat the initial utterance. As

soon as the transcription is validated, it is published using

IceStorm. Otherwise, the speech recognition will wait for a

new utterance. This process can be observed in Fig. 5.

WAIT FOR
COMMAND

PUBLISH
COMMAND

CANDIDATE = PHRASE
ASK FOR

CONFIRMATION
PHRASE IN
[YES/CANDIDATE]

PHRASE IN
[COMMANDS]
CONFIDENCE = HIGH

PHRASE IN[COMMANDS]
CONFIDENCE = LOW

PHRASE IN
[YES,NO]

PHRASE IN
[COMMANDS-CANDIDATE/NO]

Fig. 5: Dialog process

E. Preliminary Results

In this section, we present the experience of playing the

game with the robot through different snapshots. We also

introduce some of the main problems that can be faced while

playing the game.

Figure 6 shows a sequence where Loki is playing with a

human. The top left image shows the initial stage, where the

robot is waiting for a human command to start the game. In

the next image, the human tells the robot to scan the ball,

which involves head and neck movements in Loki. From this

moment, the robot starts computing in real time the body

configuration that allows it to touch the ball. Then, in the

top right image, the human says the order ”touch” and the

robot acquires the desired position. While robot is moving its

arm, the human player moves the ball to a new position. Since

Loki is tracking in real time the ball position, it moves its arm

to the new ball position, as can be seen in the bottom left

of Fig. 6. The bottom middle image shows a new ”touch”

command after the human moved the ball to a new position.

Finally, bottom right image shows the end stage, where the

human finishes the game.

In spite of fact that the game has been only evaluated

in a research laboratory with domain expert players, some

conclusions can be drawn. Although a systematic evaluation

of the robustness and accuracy of Loki’s movements and

perceptions remains to be done, the first set of experiments

shows that the overall system is quite stable, moreover ball

tracking works reasonably well under a normal playing range

of velocities. Also, recovery from tracking failures or when the

ball reaches the end of the visual field are correctly handled

most of the times. Speech recognition with the Kinect sound

technology is more than enough for the kind of dialogs used in

the game. Finally, the inverse kinematics algorithm has proved

very robust and efficient for real time operation, even when

positioning the head and the arm simultaneously. From the

point of view of the multimodal interaction, playing with a

real robot is an attractive experience for people but repetitive

games tend to be boring. New options and possibilities should

be added to the ”touch the ball” game to make it more fun and

to challenge the cognitive architecture that controls the robot.

To handle the complexity of longer sequences of actions and of

the unpredictable events that can occur, a generative tool like

a symbolic planner must be used. This tool is being included

in the current development of RoboCog. Also, human players

can be frightened when the robot starts tracking the ball and

specially when it moves its arm. This is due in part to the

dimensions of the robot, but the effect could be mitigated by

working on more natural movements, in which the whole body

is involved and special care is take with the accelerations.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented the design and development

of a game between a human and a robot involving multimodal

interaction. We have evaluated the RoboComp framework in

a new challenging scenario in which several modules (speech,

inverse kinematics, tracking) have been tested together in

real-time. Also, the RoboCog architecture has been briefly

described, showing the main lines of research that we are

pursuing with this multi-group effort. An implementation of

RoboCog over RoboComp has been tested for the ”touch the

ball” game, and very promising results have been obtained.

The software has been developed on the RCIS simulator and,

afterwards, translated to the robot Loki. A set of experiments

with humans have shown the validity of the proposal and,

also, many interesting ways in which the whole project can

be improved.

Based on this experience, we can conclude that RoboComp

is a very suitable solution for modular developments. The

geographic dispersion of the team members have stretched

the current potential of its tools to new limits. But the most

important lesson learnt here is the need of a serious discipline

and a well-thought methodology if high quality software is to

be obtained.

The use of several channels (voice, visual gestures or

visual interfaces) improves the acceptance of the game for

general public, since the robot is seen as a more friendly and

emphatic machine. However, a more complex game has to be

implemented if we want to sustain human attention for longer

periods of time. A critical part of the system, in which we have

already started to work, is a model of the human inside the

DR. This model must encompass several levels of information:

geometric, physical, symbolic, emotional and intentional. We

believe that only when this model of the interacting human

could be internally maintained by the robot, its responses will

be proactive and identified by humas as truly intentional.

Ongoing work and future research include the use of this

architecture and robots for physical and cognitive rehabili-

tation, and as a household companion. Also, the RoboCog

architecture is being improved with new high-level capabilities

such as symbolic planning and learning. These improvements

will be tested using different serious games as as mean to

solve real human problems.

8

Track this ball Touch

OK! Going

Ball touched !

Nice, move
it again

Touch

Going

Where's the ball?

Are you ready
for the game?

Yes, I am ready

The game
is over

Fig. 6: Loki playing with a human the ”touch the ball game”. See text for an explanation of the different stages.

ACKNOWLEDGMENT

This work has been partially supported by the Spanish

Ministerio de Ciencia e Innovación TIN2011-27512-C05-04,

AIB2010PT-00149 and TIN2010-20900-C04-03, by the Junta

de Extremadura project IB10062, and by JCCM PPII11-0309-

6935 project.

REFERENCES

[1] P. Bustos, I. Garcı́a-Varea, J. Martı́nez-Gómez, J. Mateos, A. Sánchez,
L. Rodrı́guez ”Loki, a mobile manipulator for social robotics” Workshop
of Physical Agents, 2012.

[2] E. Gat. ”On three-layer architectures”. Artificial Intelligence and Mobile

Robots pp: 195-210, MIT Press, 1998.
[3] O. Holland and R. Goodman ”Robots With Internal Models A Route to

Machine Consciousness?” Journal of Consciousness Studies Num. 4-5,
pp 77-109, Vol 10, 2003.

[4] C. McGann, F. Py, K. Rajan, H. Thomas, R. Henthorn, R. McEwen, ”A
deliberative architecture for AUV control”. In International Conference

on Robotics and Automation (ICRA), pp. 1049–1054, 2008.
[5] J. Bohren, R. Rusu, E.G. Jones, E. Marder and C. Pantofaru, M. Wise, L.

Mosenlechner, W. Meeussen, S. Holzer, ”Towards autonomous robotic
butlers: Lessons learned with the PR2”. In International Conference on

Robotics and Automation (ICRA), pp. 5568–5575, 2011.
[6] R. Dillmann, R. Becher, P. Steinhaus, ”ARMAR IIa learning and

cooperative multimodal humanoid robot system”. In International

Journal of Humanoid Robotics, vol. 1, num. 1, pp 143–155, World
Scientific, 2004.

[7] M. A. Goodrich and A. C. Schultz. “Human-robot interaction: A survey,”
Foundations and Trends in HumanComputer Interaction, vol. 1, no. 3,
pp. 203–275, 2007.

[8] D.B. Lenat and R. V. Guha ”Building large knowledge-based systems:
representation and inference in the Cyc project”Addison-Wesley, 1989.

[9] M. Veloso, J. Carbonell, A. Pérez, D. Borrajo, E. Fink and J. Blythe
”Integrating planning and learning: the PRODIGY architecture” Journal

of Experimental & Theoretical Artificial Intelligence Vol 7, num. 1, pp
81-120, 1995.

[10] J.E. Laird, K.R. Kinkade, S. Mohan and J.Z. Xu ”Cognitive Robotics
Using the Soar Cognitive Architecture” 8th International Workshop on

Cognitive Robotics pp. 46-54, 2012.
[11] J.R. Anderson, D. Bothell, M.D. Byrne, S. Douglass, C. Lebiere and

Y. Qin ”An integrated theory of the maind”Psychological Review, 111(4)
pp 1036-60, 2004.

[12] R.A. Brooks. ”Intelligence without representation” Artificial Intelli-

gence. Vol 47, 1991.

[13] W. Duch, R.J. Oentaryo, and M. Pasquier. ”Cognitive Architectures:
Where do we go from here?” Frontiers in Artificial Intelligence and

Applications pp: 122-136, IOS Press, 2008.

[14] P. Langley, J.E. Laird, and S. Rogers. ”Cognitive architectures: Research
issues and challenges” Cognitive Systems Research, num. 2, pp. 141–
160, vol. 10, 2009.

[15] R. Grush. ”The emulation theory of representation: motor control, im-
agery, and perception” The Behavioral and brain sciences, 27(3):377–
96, June 2004.

[16] C. Keysers and V. Gazzola. ”Integrating simulation and theory of mind:
from self to social cognition” Trends in cognitive sciences, 11(5):194–6,
May 2007.

[17] M. Johnson, Y. Demiris. ”Perspective taking through simulation”
Proceedings of TAROS, 27(3):377–96, 2005.

[18] M. Bar. ”Predictions: a universal principle in the operation of the human
brain. Introduction” Philosophical transactions of the Royal Society of

London, Series B, Biological sciences, 364(1521):1181–2, 2009.

[19] M. Bar. ”Predictions in the Brain: Using our past to generate or future”
Orford University Press, 2013.

[20] A. Clark. ”Whatever next? Predictive brains, situated agents, and the
future of cognitive science” Behav Brain Scicences 36(3):181-204, 2013.

[21] M.A. Gutierrez Giraldo ”Progress in RoboComp” Journal of Physical

Agents Vol 7, Num 1, pp: 38-47, 2013.

[22] B. Hayes-Roth. ”A blackboard architecture for control”. Artificial

Intelligence 26 (3): pp. 251321, 1985.

[23] L.J. Manso, P. Bachiller, P. Bustos, P. Núñez, R. Cintas and L. Calderita.
RoboComp: a tool-based robotics framework. In Simulation, Modeling,

and Programming for Autonomous Robots, pp 251–262. Springer, 2010.

[24] M. Henning and M. Spruiell. Distributed programming with ice. ZeroC
Inc. Revision, vol. 3. 2003

[25] S.R. Buss, J. Kim. ”Selectively Damped Least Squares for Inverse
Kinematics” Journal of Graphics Tools vol. 10, no. 3, pp: 37-49, 2005.

[26] S.R. Buss. ”Introduction to Inverse Kinematics with Jacobian Transpose,
Pseudoinverse and Damped Least Squares Methods” Unpublished

survey. http://math.ucsd.edu/ sbuss/ResearchWeb/ikmethods/iksurvey.pdf

vol. 10, no. 3, pp: 37-49, 2005.

[27] L. Rabiner, ”A tutorial on hidden Markov Models and selected
applications in speech recognition” Proceedings of the IEEE, pp. 257–
286, 1989.

[28] F. Jelinek. ”Statistical Methods for Speech Recognition” MIT press,
1998.

